
This HE Teaching Material was supported by the EGU Higher Education Teaching Material Grant 2023

CROP WATER PRODUCTIVITY

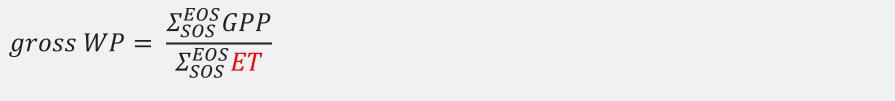
AN ONLINE SHORT COURSE BY DR. EGOR PRIKAZIUK WITH SUPPORT OF THE EUROPEAN GEOSCIENCE UNION, EGU

YOU WILL LEARN TO

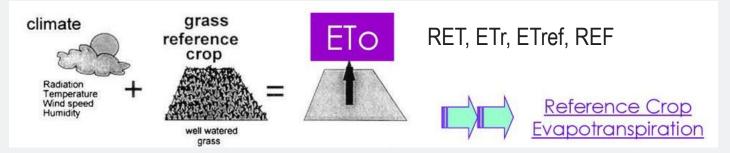
- 1. Explain the link between crop yield and crop water demand (reading, lecture)
- 2. Link the components of crop water productivity (CWP), plant productivity, evapotranspiration, with the respective Earth Observation (EO) based modelling techniques (reading, lecture)
- **3.** Calculate crop yield from EO-based gross primary productivity (GPP) estimates (exercise, Excel)
- 4. Identify **phenological metrics** (start, end of the growing season) from EO data (exercise, Excel)
- 5. Produce **meaningful**, growing season-related **estimates** of CWP (exercise, WaPOR)
- 6. Conclude on the **efficiency of the water management scheme** in the study <u>area</u> (case study)

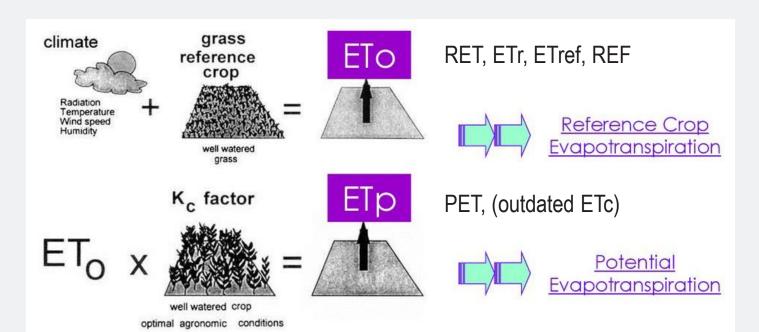
$$gross WP = \frac{\Sigma_{SOS}^{EOS}GPP}{\Sigma_{SOS}^{EOS}ET}$$

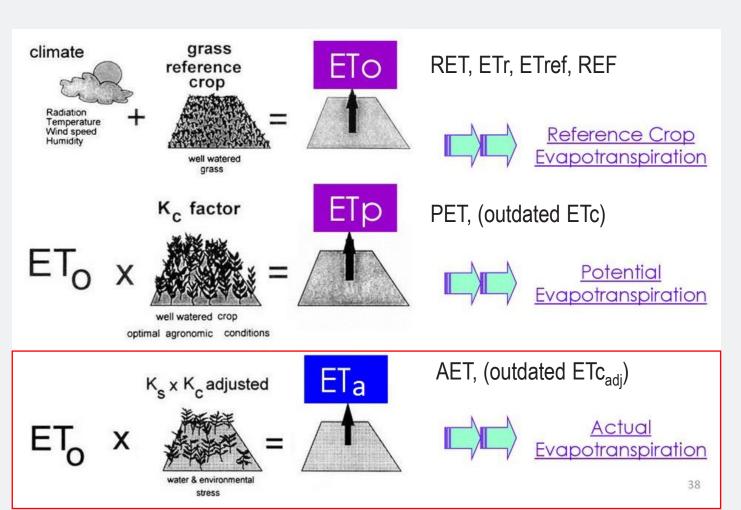
PENMAN-MONTEITH (PM) EQUATION


BY FAO

$$\lambda ET = \frac{\Delta (R_n - G) + \rho_a c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma (1 + \frac{r_s}{r_a})}$$

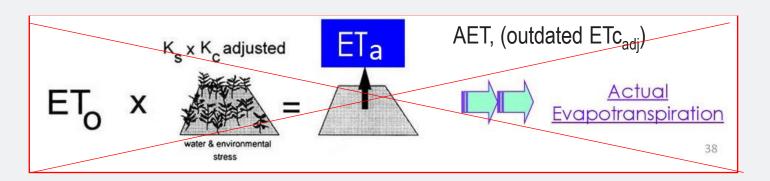

- Rn G = A available energy
- Δ slope of e_s to air temperature curve (de_s / dT)
- $e_s e_a = VPD vapour pressure deficit of air$
- ρ_a , C_p , γ , λ constants
- r_s, r_a resistances, surface and aerodynamic (depend on wind speed and canopy type)


$$gross WP = \frac{\Sigma_{SOS}^{EOS}GPP}{\Sigma_{SOS}^{EOS}ET}$$


$$gross WP = \frac{\Sigma_{SOS}^{EOS}GPP}{\Sigma_{SOS}^{EOS}ET}$$

$$gross WP = \frac{\Sigma_{SOS}^{EOS}GPP}{\Sigma_{SOS}^{EOS}ET}$$

• CWP uses <u>actual</u> evapotranspiration, AET


$$gross WP = \frac{\Sigma_{SOS}^{EOS}GPP}{\Sigma_{SOS}^{EOS}ET}$$

$$\lambda E = \frac{\Delta (R_{n,soil} - G) + \rho_a c_p \frac{(e_s - e_a)}{r_{a,soil}}}{\Delta + \gamma (1 + \frac{r_{s,soil}}{r_{a,soil}})}$$
(4)

$$\lambda T = \frac{\Delta (R_{n,canopy}) + \rho_a c_p \frac{(e_s - e_a)}{r_{a,canopy}}}{\Delta + \gamma (1 + \frac{r_{s,canopy}}{r_{a,canopy}})}$$
(5)

- partitions net radiation Rn between soil (E) and canopy (T)
- adjusts resistances

- CWP uses <u>actual</u> evapotranspiration, AET
- WaPOR computes Penman-Monteith without crop coefficients

This HE Teaching Material was supported by the EGU Higher Education Teaching Material Grant 2023

CROP WATER PRODUCTIVITY

AN ONLINE SHORT COURSE BY DR. EGOR PRIKAZIUK WITH SUPPORT OF THE EUROPEAN GEOSCIENCE UNION, EGU

