
This HE Teaching Material was supported by the EGU Higher Education Teaching Material Grant 2023

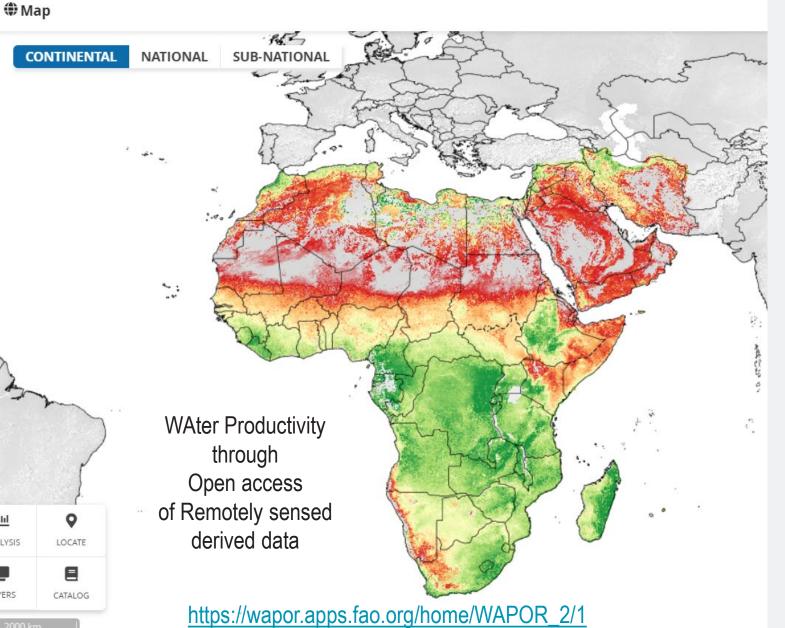
CROP WATER PRODUCTIVITY

AN ONLINE SHORT COURSE BY DR. EGOR PRIKAZIUK WITH SUPPORT OF THE EUROPEAN GEOSCIENCE UNION, EGU

EGOR PRIKAZIUK

ASSISTANT PROFESSOR, UT-ITC

Crop yield and crop water demand estimation with remote sensing


2000 km

WaPOR

The FAO portal to monitor WAter Productivity through Open a

WHAT IS <u>WATER</u> PRODUCTIVITY?

Land Productivity = Yield = $\frac{harvested\ biomass}{area\ used}$

YOU WILL LEARN IN THIS COURSE

- Crop Water Productivity = CWP = ...
- Derive meaningful estimates of CWP from WaPOR data
- Evaluate the performance of an irrigation scheme with CWP

YOU WILL LEARN TO

- Explain the link between crop yield and crop water demand (reading, lecture)
- 2. Link the components of crop water productivity (CWP), plant productivity, evapotranspiration, with the respective Earth Observation (EO) based modelling techniques (reading, lecture)
- **3.** Calculate crop yield from EO-based gross primary productivity (GPP) estimates (exercise, Excel)
- 4. Identify **phenological metrics** (start, end of the growing season) from EO data (exercise, Excel)
- Produce meaningful, growing season-related estimates of CWP (exercise, WaPOR)
- 6. Conclude on the **efficiency of the water management scheme** in the study area (case study)

This HE Teaching Material was supported by the EGU Higher Education Teaching Material Grant 2023

CROP WATER PRODUCTIVITY

AN ONLINE SHORT COURSE BY DR. EGOR PRIKAZIUK WITH SUPPORT OF THE EUROPEAN GEOSCIENCE UNION, EGU

